

Bioaccumulation Model Check-In

CPG-EPA Conference Call November 13, 2018

Meeting Objectives

- Review and reach agreement on the following:
 - FB4 model assumptions (primarily year-end weight) for determining growth and consumption rates.
 - Methods for incorporating FB4 model growth and consumption rates into LPRSA model.
- Review initial FWM results.

Percent Growth per Year

	Gewurtz	VBGF Using FishBase Parameters		Generic Life History Estimate (per J. Clough)		Other
LPRSA Species	Growth Equation	Best Estimate (n)	Range ^a	Best Estimate	Range	Growth Estimates
SFF	233%	52% (7)	53-69%	173%	85-250%	480%
Small eel	75%			17%	11-33%	8%
Blue crab	71%			69%	62-76%	
Carp	35%	15% (15)	9-20%	19%	11-29%	
Catfish	48%	12% (1)	na	15%	10-21%	
White perch	81%	37% (2)	na	43%	25-59%	21-27%
Large eel	59%			13%	7-26%	5%
Bass	62%	70% (54)	50-77%	29%	19-43%	

^a VBGF values from FishBase associated with lowest and highest temperature.

Resolution of Lingering Questions – Species for which no FB4 model is available

 No FB4 model available for invertebrates, small filter feeding fish (silversides), or American eel.

Invertebrates –

- Resolution: Use Arnot & Gobas equations (i.e., no changes to model)
- Note higher respiration rate for zooplankton, which could consider if calibration issues.

Small filter feeding fish –

- Consider FB4 gizzard shad model?
- Resolution: Use same model as for small forage fish because better matches life stage that we are trying to model.

American eel –

- Initially had proposed bass, but re-evaluated based on diet and percent growth.
- Resolution: Use catfish model for eel.

Resolution of Lingering Questions –Other issues

Blue crab –

- Difference in blue crab model; appears to be result of different temperature range.
- Ultimately question is whether we should cap growth rates (as done for consumption rates) – only an issue for crab
- Resolution: discussion needed

Growth rate for small forage fish –

- Wide range of results, including difference in how VBGF parameters from FishBase are applied.
- Resolution: discussion needed

Growth rate for bass –

- Two methods produced differing results; VBGF indicates that most bass are young (4 yrs of age or less).
- Resolution: Use VBGF estimate of growth.

Selected End Weights for FB4 Model

	Starting	End Weight (kg)				
LPRSA Species	weight (kg)	Gewurtz	VBGF / FishBase	Literature (J. Clough)		
Small forage fish	0.0027	0.009	0.0044 **	0.0074		
Blue crab	0.14	0.24	-	0.24		
Carp	3.1	4.2	3.6	3.7		
Catfish	0.88	1.3	0.99	1.0		
White perch	0.094	0.17	0.13	0.13		
Bass	0.29	0.47	0.49	0.37		

Note:

End weight is based on information from literature (identified by J. Clough) when ≤2 sets of VBGF parameters were available in FishBase.

Incorporation into LPRSA FWM -

FB4 Model Estimates of Growth and Consumption

- Step 1 Develop relationship between growth rate and consumption rate for each species using FB4 model.
- **Step 2** Evaluate how to calculate either growth rate or consumption rate as a function of temperature.
 - Temperature-consumption rate relationship is easier to model.
- Step 3 Develop relationship between temperature and consumption rate for each species using FB4 model.
 - Relationship based on log-normalized data
 - Set maximum equal to maximum observed in FB4 model over range of LPRSA temperatures.
- **Step 4** Calculate growth rate from consumption rate using relationship developed in Step 1.
 - Need to set ceiling for growth rates as done for consumption rate?
 (Mainly just an issue for blue crab)

Step 1 – Develop consumption-growth rate relationship

Step 2 – Evaluate consumption and growth rates relative to temperature

Step 3 -

Develop consumption rate-temperature relationship (1 of 2)

Exponential regression (Cons. Rate = exp(a + b * Temp))

Step 3 -

Develop consumption rate-temperature relationship (2 of 2)

Exponential regression (Cons. Rate = exp(a + b * Temp)) in linear space

Step 4 – Calculate growth rate from consumption rate

Review of Initial LPRSA Model Results

- Initial LPRSA model results look promising
 - Model runs based on "initial calibration," which used default parameter values with the following exceptions:
 - Changing weight for DEP
 - Reducing percent sediment in DEP diet
 - Reducing DO SAT for RM 6-14.7
 - Changing the dietary AE of NLOC and NLOM for invertebrates
- Some re-calibration will be needed (e.g., for metabolic rates).

Next Steps

- Complete any follow-up items from call and make needed revisions to model.
- Revise calibration based on updated model documentation.